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Hysteresis in shape memory alloys. Is it always a constant?
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Shape Memory Alloys (SMAs) have been used in many
applications due to their unique shape memory behav-
ior. These materials can be “plastically” deformed at
a low temperature, and then return to their shape prior
to the deformation upon heating. This is known as the
shape memory effect. If they are deformed at a high
temperature, upon releasing the applied load, the orig-
inal shape can be fully recovered. This is superelastic-
ity. The underlying mechanism of these phenomena is
the phase transformation between the high temperature
austenite phase (A) and the low temperature martensite
phase (M) and reorientation among marteniste variants,
which are crystallographically equivalent, but oriented
along different directions.

Hysteresis means the difference between the forward
and reverse transformations. It is intrinsic in SMAs due
to the energy dissipation in a full transformation cycle.
In the case of thermal cycling with any external load,
it is the difference in temperature between the forward
transformation upon cooling (A → M) and the reverse
transformation upon heating (M → A) [1]. Under a
constant external load, it is the temperature difference
in the temperature vs. displacement curves upon heating
and cooling. For a superelastic SMA, the difference in
stress (force) in the load vs. displacement curves upon
loading and unloading is hysteresis.

In general, hysteresis is considered as a constant in a
particular type of cyclic condition. However, is it always
a constant? This paper aims to answer this question.

For simplicity, we consider an austenite SMA single
crystal, which has m martensite variants that are associ-
ated with m transformation strains. The complementary
free energy of a unit volume of SMA is given by [2]

�(�i j , T, ξ ) = −[�(�i j , T, ξ ) − �i j Ei j ] (1)

where �i j is the macroscopic stress tensor and Ei j is
the macroscopic strain tensor, which can be divided into
two parts as a first-order estimation, i.e., elastic strain
Ee

i j and transformation strain Et
i j (Ei j = Ee

i j + Et
i j ).

T is the temperature. In this expression Helmoltz free
energy is defined as

�(�i j , T, ξ ) = �Gch(T ) + Wmech + Wsurf (2)
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where �Gch is the change of the chemical free energy
due to the phase transformation, Wsurf is the surface
energy at the interphase between austenite and marten-
site and interface between martensite variants. Wmech is
the mechanical energy. Wsurf is small. As a traditional
practice, it can be ignored.

According to the second law of thermodynamics, for
any transformation process we have

d� = d E A→M ≥ 0 (3)

Here, E A→M is the energy dissipation in the forward
transformation. Assume that it is a constant for a trans-
formation from an austenite to any martensite variant.

For a material that is uniform and homogeneous, the
chemical-free energy is a function of temperature only.
At a temperature T , the change of chemical energy due
to the A → M transformation may be written as

�Gch(T ) = G M
ch(T ) − G A

ch(T ) = �Gch(T ) (4)

It is reasonably accurate to use a linear approximation
for the temperature range around the equilibrium tem-
perature Tequ. This yields

�Gch = �Ḡch(T − Tequ) (5)

where �Ḡch is a constant. The mechanical energy is
given by

Wmech = 1

2
�i j Ci jkl�kl + Wint (6)

where Ci jkl is the elastic compliance tensor. Wint is the
internal energy, which can be removed if the whole
grain transforms into one marteniste variant instantly.

As the applied stress is greater than a certain value,
stress induced martensitic transformation occurs. If the
deformation is carried out at an extremely slow speed,
the variation of temperature is very small. Assuming
that the whole grain transforms into one particular
martensite variant (Mi ), one has [2],

− 1

2
�i j

(
C A

i jkl − C Mi

i jkl

)
�kl + �i j Et

i j = K A→M (7)

0022–2461 C© 2005 Springer Science + Business Media, Inc. 2985



where K A→M = E A→M + �Ḡch(T − Tequ), is the
driving energy (or driving force) for the forward trans-
formation at temperature T . C A

i jkl and C Mi

i jkl are elastic
compliance tensors of austenite and martensite vari-
ant i , respectively. Among m possible variants, the
favorite one is the one with the largest phase trans-
formation strain along the direction of the applied
stress.

Similarly, we can obtain the expression for the re-
verse transformation (M → A) at T ∗ as

1

2
�∗

i j

(
C A

i jkl − C Mi

i jkl

)
�∗

kl − �∗
i j Et

i j

= EM→A − �Ḡch(T ∗ − Tequ) (8)

Consider the case of thermal cycling under a constant
load, i.e.,

�i j = �∗
i j (9)

From Equations 11 and 12, one has

E A→M + �Ḡch(T − Tequ) + EM→A

− �Ḡch(T ∗ − Tequ) = 0 (10)

Hence, hysteresis (�T )

�T = T ∗ − T = E A→M + EM→A

�Ḡch
(11)

It reveals that hysteresis is a constant in the case of
thermal cycling under a constant load.

In the case of loading/unloading at a constant tem-
perature (i.e., T = T ∗), from Equations 7 and 8 we can
obtain

−1

2
�i j

(
C A

i jkl − C Mi

i jkl

)
�kl + �i j Et

i j

+ 1

2
�∗

i j

(
C A

i jkl − C Mi

i jkl

)
�∗

kl − �∗
i j Et

i j

= E A→M + EM→A (12)

It is apparent that hysteresis (��ij = �ij − �∗
ij) is not

a constant anymore. Let us consider the simplest case
of uniaxial tension. Under such a situation, as shown in
[3], Equation 16 can be reduced to

1

2

(
1

DM
− 1

DA

)
(σ 2 − [σ ∗]2) + (σ − σ ∗)εt

= E A→M + EM→A (13)

where σ and σ ∗ are the transformation stress in loading
and unloading, εt is the transformation strain, DM and
DA are the Young’s Moduli of martensite and austenite.
Hysteresis can be obtained as

�σ = (σ − σ ∗) = E A→M + EM→A(
1

DM
− 1

DA

) (σ+σ ∗)
2 + εt

(14)

This reveals that in the case of loading/unloading at
a constant temperature, hysteresis is not a constant
anymore, but depends on the temperature. Since at a
higher temperature, the required transformation stress
is higher, σ+σ ∗

2 is higher. Subsequently, hysteresis (�σ )
becomes smaller.

To conclude, this paper demonstrates that hysteresis
is not always a constant. In the case of thermal cycling
under a constant load, hysteresis (in terms of tempera-
ture) is not only a constant, but also independent on the
magnitude of the applied load. However, in the case of
loading/unloading at a constant temperature, because
of the difference in the elastic compliance tensors of
austenite and martensite, hysteresis (in terms of stress)
is temperature dependent. At a higher temperature, hys-
teresis is smaller.

References
1. W. M. H U A N G , Mater. Design. 23 (2002) 11.
2. W. H U A N G , Acta. Mater. 47 (1999) 2769.
3. W. M. H U A N G , Scripta. Mater. 50 (2003) 353.

Received 18 December 2003
and accepted 29 September 2004

2986


